Login / Signup

A Modular 3-Degrees-of-Freedom Force Sensor for Robot-Assisted Minimally Invasive Surgery Research.

Zonghe ChuaAllison M Okamura
Published in: Sensors (Basel, Switzerland) (2023)
Effective force modulation during tissue manipulation is important for ensuring safe, robot-assisted, minimally invasive surgery (RMIS). Strict requirements for in vivo applications have led to prior sensor designs that trade off ease of manufacture and integration against force measurement accuracy along the tool axis. Due to this trade-off, there are no commercial, off-the-shelf, 3-degrees-of-freedom (3DoF) force sensors for RMIS available to researchers. This makes it challenging to develop new approaches to indirect sensing and haptic feedback for bimanual telesurgical manipulation. We present a modular 3DoF force sensor that integrates easily with an existing RMIS tool. We achieve this by relaxing biocompatibility and sterilizability requirements and by using commercial load cells and common electromechanical fabrication techniques. The sensor has a range of ±5 N axially and ±3 N laterally with errors of below 0.15 N and maximum errors below 11% of the sensing range in all directions. During telemanipulation, a pair of jaw-mounted sensors achieved average errors below 0.15 N in all directions. It achieved an average grip force error of 0.156 N. The sensor is for bimanual haptic feedback and robotic force control in delicate tissue telemanipulation. As an open-source design, the sensors can be adapted to suit other non-RMIS robotic applications.
Keyphrases
  • robot assisted
  • single molecule
  • minimally invasive
  • low cost
  • oxidative stress
  • induced apoptosis
  • adverse drug
  • signaling pathway
  • cell cycle arrest
  • pi k akt
  • cerebral palsy