The ATP-dependent RNA helicase, DDX42 interacts with paxillin and regulates apoptosis and polarization of Ba/F3 cells.
Sung Oh SohnKee Oh ChayPublished in: Animal cells and systems (2019)
Paxillin is a focal adhesion adaptor protein, heavily phosphorylated at multiple tyrosine residues, as well as at serine 273 (S273), and is known to be critical for cytoskeleton rearrangement and cell migration. We previously found that paxillin plays a regulatory role in IL-3-dependent survival of Ba/F3 cells, a mouse pro-B cell line. In this study, by using overexpressed His6 tagged-paxillin as a bait, we found that DDX42, a DEAD-box RNA helicase, interacted with paxillin, inhibited apoptosis, and promoted polarization of Ba/F3 cells. His6 tagged-paxillin was stably overexpressed in Ba/F3 cells, pulled-down from cell lysates with Ni+-NTA beads, and analyzed by one-dimensional SDS-PAGE followed by LC-MS. We found that DDX42 co-precipitated with paxillin, as demonstrated by western blotting analysis of His6 tagged-paxillin precipitates with anti-DDX42 antibodies and His6 tagged-DDX42 precipitates with anti-paxillin antibodies. In addition, we observed a preferential interaction of DDX42 with the paxillin mutant, S273A, compared to the S273D mutant. Furthermore, DDX42 overexpression in Ba/F3 cells delayed the apoptosis induced by IL-3 deprivation and promoted restoration of the elongated shape in Ba/F3 cells induced by IL-3 re-supply after a 6 h-deprivation. These results suggested that DDX42 interacts with paxillin and participates in IL-3-dependent cell survival, as well as in the cytoskeletal rearrangements underlying polarization of Ba/F3 cells.