Truncated Hollow Cone Probe for Assessing Transepidermal Water Loss and Skin Hardness.
Daniel Jai Kyoung SimBongyoung AhnIl DohPublished in: ACS sensors (2018)
This study proposes a skin analysis device using a truncate hollow cone (THC) probe for measuring both transepidermal water loss (TEWL) and skin hardness. Because skin health is closely related to the epidermal barrier function and skin mechanical property, it is important to measure their biophysical indicators at the same time, to understand skin conditions and diagnose skin disorders such as atopic dermatitis and systemic sclerosis. Previous skin analyzers, however, required different probes with different protocols for each biophysical indicators, which makes the measurement inconvenient and increases the measurement uncertainty. The present device consists of a THC probe equipped with humidity and force sensors, and an actuator that simultaneously measure both TEWL and skin hardness which indicate the integrity of the epidermal barrier function and the skin mechanical property, respectively. Using artificial reference skins, the prototype device showed the TEWL with a sensitivity and linearity of 0.011 (%/s)/(g/m2/h) and 99.5%, and the hardness with 0.075 N/(Shore 00) and 97.6%, respectively, which are within the appropriate range for the properties of human skin. The on-body measurement of five subjects showed that the proposed device could measure both the TEWL and skin hardness without any crosstalk from each other. The proposed device has great potential for in-depth analysis of the health status of the skin which could indicate various skin diseases.