Login / Signup

Oxygen Vacancy-Dependent Chemiluminescence: A Facile Approach for Quantifying Oxygen Defects in ZnO.

Jing LeiWei LiuYan JinBaoxin Li
Published in: Analytical chemistry (2022)
Defect engineering is an effective strategy to improve the catalytic activity of metal oxides, and quantitative characterization of surface defects is thus vital to the understanding and application of metal oxide catalysts. Herein, we found that ZnO nanoparticles with oxygen vacancy could trigger the luminol-H 2 O 2 system to emit a strong chemiluminescence (CL), and the CL intensity was strongly dependent on the oxygen vacancy of the ZnO nanoparticles. The mechanism of this CL reaction was discussed by means of the electron-spin resonance spectrum, X-ray photoelectron spectrum (XPS), and CL spectrum. The oxygen vacancy-dependent CL was attributed to the ability of the oxygen vacancy to readily adsorb and further dissociate H 2 O 2 into active • OH radicals. Taking advantage of this oxygen vacancy-dependent CL, we presented one method for quantifying the oxygen defects in ZnO. Compared with the current evaluation techniques (XPS and Raman spectroscopy), this CL method is rapid, low-cost, and easy to operate. This work introduces the CL technique into the field of material structure-property evaluation, and provides a new approach for exploring the defect function in ZnO defect engineering.
Keyphrases