Tailoring Second Coordination Sphere for Tunable Solid-Liquid Interfacial Charge Transfer toward Enhanced Photoelectrochemical H 2 Production.
Yangguang HuWu ZhouWanbing GongChao GaoShaohua ShenTingting KongYujie XiongPublished in: Angewandte Chemie (International ed. in English) (2024)
The recombination of photogenerated charge carriers severely limits the performance of photoelectrochemical (PEC) H 2 production. Here, we demonstrate that this limitation can be overcome by optimizing the charge transfer dynamics at the solid-liquid interface via molecular catalyst design. Specifically, the surface of a p-Si photocathode is modulated using molecular catalysts with different metal atoms and organic ligands to improve H 2 production performance. Co(pda-SO 3 H) 2 is identified as an efficient and durable catalyst for H 2 production through the rational design of metal centers and first/second coordination spheres. The modulation with Co(pda-SO 3 H) 2 , which contains an electron-withdrawing -SO 3 H group in the second coordination sphere, elevates the flat-band potential of the polished p-Si photocathode and nanoporous p-Si photocathode by 81 mV and 124 mV, respectively, leading to the maximized energy band bending and the minimized interfacial carrier transport resistance. Consequently, both the two photocathodes achieve the Faradaic efficiency of more than 95 % for H 2 production, which is well maintained during 18 h and 21 h reaction, respectively. This work highlights that the band-edge engineering by molecular catalysts could be an important design consideration for semiconductor-catalyst hybrids toward PEC H 2 production.