Login / Signup

Ultrasensitive Photothermal Switching with Resonant Silicon Metasurfaces at Visible Bands.

Ying CheTian-Yue ZhangTan ShiZi-Lan DengYaoyu CaoBai-Ou GuanXiangping Li
Published in: Nano letters (2023)
Dynamic access to quasi-bound states in the continuum (q-BICs) offers a highly desired platform for silicon-based active nanophotonic applications, while the prevailing tuning approaches by free carrier injections via an all-optical stimulus are yet limited to THz and infrared ranges and are less effective in visible bands. In this work, we present the realization of active manipulations on q-BICs for nanoscale optical switching in the visible by introducing a local index perturbation through a photothermal mechanism. The sharp q-BIC resonance exhibits an ultrasensitive susceptibility to the complex index perturbation, which can be flexibly fulfilled by optical heating of silicon. Consequently, a mild pump intensity of 1 MW/cm 2 can yield a modification of the imaginary part of the refractive index of less than 0.05, which effectively suppresses the sharp q-BIC resonances and renders an active modulation depth of reflectance exceeding 80%. Our research might open up an enabling platform for ultrasensitive dynamic nanophotonic devices.
Keyphrases