Lysosomes Alteration in HeLa Cell Exposed with 1-Aminocyclopropane-1-Carboxylic Acid, the Ethylene Precursor of Plant Hormones.
Mi Young HeoRa-Mi ParkBit-Na KimNgoc-Han Thi NguyenHye Weon JangYang-Hoon KimJiho MinPublished in: Molecular biotechnology (2020)
The study of senescence preservative on cut flowers helps boost the commercial value of flowers. Senescence in cut flower is associated with an increase of ethylene production, and is significantly influenced by ethylene pathway. This study was conducted to investigate whether S-adenosyl-L-methionine (SAM) and aminocyclopropane-1-carboxylic acid (ACC) involved in the ethylene synthesis process are correlated with the lysosome. The alterations of lysosome which was treated with the ethylene precursors ACC and SAM in HeLa cell using the confocal laser scanning microscope were investigated. According to the experimental results, the activity of lysosomes increased concentration dependently by ACC treatment, however, no change was observed by SAM treatment. In addition, Liquid chromatography-mass spectrometry (LC/MS) analysis was performed to confirm the effect of lysosomal enzyme (LE) extracted from egg white on ACC reduction, but no change was observed. On the contrary, to confirm the effect of ACC on lysosomes, lysosomes were extracted from HeLa cells treated with 5 mM ACC and confirmed by FE-SEM. The results showed that the size of lysosomes treated with ACC is larger than that of the control, which was treated with distilled water. The lysosomes in the control group were distributed in various ranges from 0 to 800 nm, but those treated with 5 mM ACC were in the range of 400 nm to 800 nm or more. Therefore, lysosomes had no effect on ACC, the precursor of ethylene, the aging hormone of cut flowers, however, ACC had effect on lysosomes.