Login / Signup

In Situ Observation of Solvent Exchange Kinetics in a MOF with Coordinatively Unsaturated Sites.

Hochul WooAngela M DevlinAdam J Matzger
Published in: Journal of the American Chemical Society (2023)
Solvent exchange of synthesis solvent within metal-organic frameworks (MOFs) is an essential process for the activation of coordinatively unsaturated sites (CUS) to achieve an optimal surface area; activation of the CUS is required to exploit the versatile applications of MOFs. However, it is challenging to replace CUS-bound synthesis solvent prior to MOF activation, which can lead to a structural collapse and reduced surface area post-evacuation. Herein, we quantify the exchange behavior of a copper paddlewheel-based CUS-MOF (HKUST-1) in the presence of three different solvents: ethanol (EtOH), dichloromethane (DCM), and N , N -dimethylformamide (DMF). The DMF release profiles are monitored via in situ observation of the exchange solvent composition via 1 H NMR and Raman spectroscopy at the macroscopic scale. Furthermore, the change in solvent within a single crystal is measured to directly elucidate the exchange behavior. We demonstrate the DMF release profile from HKUST-1 exhibits different rate laws depending on whether the solvent exchange occurs at the CUS or is purely diffusive through the pores. This contribution represents the first characterization of release from a CUS-MOF as a function exchange solvent and reveals that solvent exchange in a CUS-MOF is not diffusion-limited, but rather is limited by the solvent exchange kinetics at the metal center. Insights from this study can be generalized to the variety of copper-paddlewheel-based MOFs, informing best practices for solvent exchange.
Keyphrases
  • metal organic framework
  • ionic liquid
  • healthcare
  • raman spectroscopy
  • mass spectrometry
  • solid state