Login / Signup

Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery.

Cassandra R BlanchetteAmy L ScaleraKathryn P HarrisZechuan ZhaoErica C DresselhausKate KolesAnna YehJulia K ApikiBryan A StewartAvital Adah Rodal
Published in: The Journal of cell biology (2022)
Neuronal extracellular vesicles (EVs) are locally released from presynaptic terminals, carrying cargoes critical for intercellular signaling and disease. EVs are derived from endosomes, but it is unknown how these cargoes are directed to the EV pathway rather than for conventional endolysosomal degradation. Here, we find that endocytic machinery plays an unexpected role in maintaining a release-competent pool of EV cargoes at synapses. Endocytic mutants, including nervous wreck (nwk), shibire/dynamin, and AP-2, unexpectedly exhibit local presynaptic depletion specifically of EV cargoes. Accordingly, nwk mutants phenocopy synaptic plasticity defects associated with loss of the EV cargo synaptotagmin-4 (Syt4) and suppress lethality upon overexpression of the EV cargo amyloid precursor protein (APP). These EV defects are genetically separable from canonical endocytic functions in synaptic vesicle recycling and synaptic growth. Endocytic machinery opposes the endosomal retromer complex to regulate EV cargo levels and acts upstream of synaptic cargo removal by retrograde axonal transport. Our data suggest a novel molecular mechanism that locally promotes cargo loading into synaptic EVs.
Keyphrases
  • prefrontal cortex
  • transcription factor
  • spinal cord injury
  • air pollution
  • big data
  • artificial intelligence
  • brain injury
  • amino acid
  • deep learning
  • data analysis
  • peripheral nerve