Effect of the Interaction Length on Clusters Formed by Spherical One-Patch Particles on Flat Planes.
Masahide SatoPublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
Considering that one-patch particles rotate three-dimensionally and translate on a two-dimensional flat plane, I performed isothermal-isochoric Monte Carlo simulations to study how two-dimensional self-assemblies formed by spherical patchy particles depending on the interaction length and patch area. As the interaction potential between one-patch particles, the Kern-Frenkel (KF) potential is used in the simulations. With increasing patch area, the shape of the most numerous clusters changes from dimers to island-like clusters with a square lattice via triangular trimers, square tetramers, and chain-like clusters when the interaction length is as long as the particle radius. With a longer interaction length, other shapes of polygonal clusters such as another type of square tetramers, two types of pentagonal pentamers, hexagonal hexamers, and hexagonal heptamers also form.