A Low-Cost Silica Fiber/Epoxy Composite with Excellent Dielectric Properties, and Good Mechanical and Thermal Stability.
Imran HaiderIftikhar Hussain GulMalik Adeel UmerMutawara Mahmood BaigPublished in: Materials (Basel, Switzerland) (2023)
In many electronic applications, the dielectric and structural properties of reinforced composites are vital. In this research work, the influence of fiber proportion on the properties of a silica fiber/epoxy (SFE) composite was investigated. The structure, morphology, dielectric constant and loss factor, mechanical properties, and thermal stability were determined. The increase of wt.% of silica fiber (SiO 2 (f) ) x = 30 to 90, reduced the dielectric constant (εr) and dielectric loss (δ) of the SFE composite from their original values to 18.9% and 48.5%, lowering local charge displacement towards the applied electric field. The SFE composite showed higher mechanical properties with the increase in SiO 2 (f) , x = 30 to 80, the tensile strength (UTS) was raised from 91.6 MPa to 155.7 MPa, the compression strength (UCS) was increased from 261.1 MPa to 409.6 MPa and the flexural strength was enhanced from 192.3 MPa to 311.9 MPa. Upon further addition of SiO 2 (f) to the composite, i.e., x = 90, the mechanical properties were reduced a little, but the dielectric properties were not changed. Increasing SiO 2 (f) improved the thermal stability as weight loss was found to be 69% (x = 30) and 24% (x = 90), and average moisture absorption was found to be 1.1 to 1.8%. A silica fiber/epoxy composite, for microelectronics, can be made from a low-cost fiber, and its dielectric properties as well as its mechanical and thermal stability can be tuned or improved by varying fiber fractions.