Login / Signup

Detection of blood pathogens in camels and their associated ectoparasitic camel biting keds, Hippobosca camelina: the potential application of keds in xenodiagnosis of camel haemopathogens.

Kevin O KidambasiDaniel K MasigaJandouwe VillingerMark CarringtonJoel Ltilitan Bargul
Published in: AAS open research (2020)
Background: Major constraints to camel production include pests and diseases. In northern Kenya, little information is available about blood-borne pathogens circulating in one-humped camels ( Camelus dromedarius) or their possible transmission by the camel haematophagous ectoparasite, Hippobosca camelina, commonly known as camel ked or camel fly. This study aimed to: (i) identify the presence of potentially insect-vectored pathogens in camels and camel keds, and (ii) assess the potential utility of keds for xenodiagnosis of camel pathogens that they may not vector. Methods: In Laisamis, northern Kenya, camel blood samples (n = 249) and camel keds (n = 117) were randomly collected from camels. All samples were screened for trypanosomal and camelpox DNA by PCR, and for Anaplasma, Ehrlichia, Brucella, Coxiella, Theileria, and Babesia by PCR coupled with high-resolution melting (PCR-HRM) analysis. Results: In camels, we detected Trypanosoma vivax (41%), Trypanosoma evansi (1.2%), and " Candidatus Anaplasma camelii" (68.67%). In camel keds, we also detected T. vivax (45.3%), T. evansi (2.56%), Trypanosoma melophagium (1/117) (0.4%), and " Candidatus Anaplasma camelii" (16.24 %). Piroplasms ( Theileria spp. and Babesia spp.), Coxiella burnetii, Brucella spp., Ehrlichia spp., and camel pox were not detected in any samples. Conclusions: This study reveals the presence of epizootic pathogens in camels from northern Kenya. Furthermore, the presence of the same pathogens in camels and in keds collected from sampled camels suggests the potential use of these flies in xenodiagnosis of haemopathogens circulating in camels.
Keyphrases
  • high resolution
  • gram negative
  • antimicrobial resistance
  • healthcare
  • real time pcr
  • mass spectrometry
  • social media
  • single molecule
  • high speed
  • nucleic acid
  • drosophila melanogaster
  • circulating tumor cells