Elicitor-Driven Defense Mechanisms: Shielding Cotton Plants against the Onslaught of Cotton Leaf Curl Multan Virus (CLCuMuV) Disease.
Muhammad Fahad KhanUmmad Ud Din UmarAbdulwahed Fahad AlrefaeiMuhammad Junaid RaoPublished in: Metabolites (2023)
Salicylic acid (SA), benzothiadiazole (BTH), and methyl jasmonate (MeJA) are potential elicitors found in plants, playing a crucial role against various biotic and abiotic stresses. The systemic acquired resistance (SAR) mechanism was evaluated in cotton plants for the suppression of Cotton leaf curl Multan Virus (CLCuMuV) by the exogenous application of different elicitors. Seven different treatments of SA, MeJA, and BTH were applied exogenously at different concentrations and combinations. In response to elicitors treatment, enzymatic activities such as SOD, POD, CAT, PPO, PAL, β-1,3 glucanse, and chitinase as biochemical markers for resistance were determined from virus-inoculated and uninoculated cotton plants of susceptible and tolerant varieties, respectively. CLCuMuV was inoculated on cotton plants by whitefly ( Bemesia tabaci biotype Asia II-1) and detected by PCR using specific primers for the coat protein region and the Cotton leaf curl betasatellite (CLCuMuBV)-associated component of CLCuMuV. The development of disease symptoms was observed and recorded on treated and control plants. The results revealed that BTH applied at a concentration of 1.1 mM appeared to be the most effective treatment for suppressing CLCuMuV disease in both varieties. The enzymatic activities in both varieties were not significantly different, and the disease was almost equally suppressed in BTH-treated cotton plants following virus inoculation. The beta satellite and coat protein regions of CLCuMuV were not detected by PCR in the cotton plants treated with BTH at either concentration. Among all elicitors, 1.1 mM BTH was proven to be the best option for inducing resistance after the onset of CLCuMuV infection and hence it could be part of the integrated disease management program against Cotton leaf curl virus .