Login / Signup

Copper-Mediated Radical-Polar Crossover Enables Photocatalytic Oxidative Functionalization of Sterically Bulky Alkenes.

Nicholas L ReedGrace A LutovskyTehshik P Yoon
Published in: Journal of the American Chemical Society (2021)
Oxidative heterofunctionalization reactions are among the most attractive methods for the conversion of alkenes and heteroatomic nucleophiles into complex saturated heterocycles. However, the state-of-the-art transition-metal-catalyzed methods to effect oxidative heterofunctionalizations are typically limited to unhindered olefins, and different nucleophilic partners generally require quite different reaction conditions. Herein, we show that Cu(II)-mediated radical-polar crossover allows for highly efficient and exceptionally mild photocatalytic oxidative heterofunctionalization reactions between bulky tri- and tetrasubstituted alkenes and a wide variety of nucleophilic partners. Moreover, we demonstrate that the broad scope of this transformation arises from photocatalytic alkene activation and thus complements existing transition-metal-catalyzed methods for oxidative heterofunctionalization. More broadly, these results further demonstrate that Cu(II) salts are ideal terminal oxidants for photoredox applications and that the combination of photocatalytic substrate activation and Cu(II)-mediated radical oxidation can address long-standing challenges in catalytic oxidation chemistry.
Keyphrases