Development of a Point-of-Care Assay for HIV-1 Viral Load Using Higher Refractive Index Antibody-Coated Microbeads.
Mazhar SherBenjamin ColemanMassimo CaputiWaseem AsgharPublished in: Sensors (Basel, Switzerland) (2021)
The detection of viruses using imaging techniques is challenging because of the weak scattering of light generated by the targets of sizes in the nanometer range. The system we have developed overcomes the light scattering problems by utilizing antibody-coated microbeads of higher index of refraction that can specifically bind with viruses and increase the acceptance angle. Using the new technology, we have developed a portable, cost-effective, and field-deployable platform for the rapid quantification of HIV-1 viral load for point-of-care (POC) settings. The system combines microfluidics with a wide field of view lensless imaging technology. Highly specific antibodies are functionalized to a glass slide inside a microchip to capture HIV-1 virions. The captured virions are then bound by antibody-conjugated microbeads, which have a higher refraction index. The microbeads-HIV-1 virions complexes generate diffraction patterns that are detected with a custom-built imaging setup and rapidly and accurately quantified by computational analysis. This platform technology enables fast nanoscale virus imaging and quantification from biological samples and thus can play a significant role in the detection and management of viral diseases.
Keyphrases