Login / Signup

Microdrop-Assisted Microdomain Hydrophilicization of Superhydrophobic Surfaces for High-Efficiency Nucleation and Self-Removal of Condensate Microdrops.

Dandan XingFeifei WuRui WangJie ZhuXuefeng Gao
Published in: ACS applied materials & interfaces (2019)
Superhydrophobic-hydrophilic hybrid surfaces have attracted intensive interest because of their significant academic and commercial values. However, almost all reported microdomain hydrophilicization methods rely on costly micropatterning techniques that need special instruments. Here, we report a microdrop-assisted method for microdomain hydrophilicization of a low-adhesive superhydrophobic surface and demonstrate its utility in high-efficiency nucleation and self-removal of condensate microdrops. Micrometer-sized fogdrops containing polyvinyl alcohol molecules can be selectively captured by breath figures of superhydrophobic surfaces with specific sizes and spatial distributions and can be converted into desired hydrophilic microdomains after thermal evaporation. After exploring the influence of hydrophilic microdomains' distributions and sizes to surface wettability, adhesion, and condensation dynamics, we achieved an optimal hybrid surface, which possesses 240% average microdrop density, 387% microdrop self-removal rate, and 75% average microdrop diameter as compared to the contrast superhydrophobic surface with uniform chemistry nature. This method is dispensed with special equipment, easy to implement, very cheap, and eco-friendly, which would help develop other superhydrophobic-hydrophilic hybrid surfaces with different functions such as water harvesting, dehumidification, and heat exchange.
Keyphrases