Login / Signup

Simulation Verification of Barrierless HONO Formation from the Oxidation Reaction System of NO, Cl, and Water in the Atmosphere.

Xianwei ZhaoXiangli ShiXiaohui MaJunjie WangFei XuQingzhu ZhangYing LiZhuochao TengYanan HanQiao WangWenxing Wang
Published in: Environmental science & technology (2021)
Nitrous acid (HONO) is a major source of hydroxyl (OH) radicals, and identifying its source is crucial to atmospheric chemistry. Here, a new formation route of HONO from the reaction of NO with Cl radicals with the aid of one or two water molecules [(Cl) (NO) (H2O)n (n = 1-2)] as well as on the droplet surface was found by Born-Oppenheimer molecular dynamic simulation and metadynamic simulation. The (Cl) (NO) (H2O)1 (monohydrate) system exhibited a free-energy barrier of approximately 0.95 kcal mol-1, whereas the (Cl) (NO) (H2O)2 (dihydrate) system was barrierless. For the dihydrate system and the reaction of NO with Cl radicals on the droplet surface, only one water molecule participated in the reaction and the other acted as the "solvent" molecule. The production rates of HONO suggested that the monohydrate system ([NO] = 8.56 × 1012 molecule cm-3, [Cl] = 8.00 × 106 molecule cm-3, [H2O] = 5.18 × 1017 molecule cm-3) could account for 40.3% of the unknown HONO production rate (Punknown) at site 1 and 53.8% of Punknown at site 2 in the East China Sea. This study identified the importance of the reaction system of NO, Cl, and water molecules in the formation of HONO in the marine boundary layer region.
Keyphrases
  • high throughput
  • single cell
  • particulate matter
  • hydrogen peroxide
  • single molecule
  • low birth weight
  • drug discovery
  • carbon dioxide