Login / Signup

Nickel Particles Selectively Confined in the Mesoporous Channels of SBA-15 Yielding a Very Stable Catalyst for DRM Reaction.

Alberto Rodriguez-GomezRosa PereñiguezAlfonso Caballero
Published in: The journal of physical chemistry. B (2017)
A series of four Ni catalysts supported on SBA-15 and on a high SiO2 surface area have been prepared by modified impregnation (ImU) and deposition-precipitation (DP) methods. The catalysts have been extensively characterized, including in situ XAS (bulk sensitive) and XPS (surface sensitive) techniques, and their catalytic activities evaluated in the dry reforming reaction of methane (DRM). The combined use of XPS and XAS has allowed us to determine the location of nickel particles on each catalyst after reduction at high temperature (750 °C). Both Ni/SiO2-DP and Ni/SBA-15-DP catalysts yield well-dispersed and homogeneous metallic phases mainly located in the mesoporosity of both supports. On the contrary, the Ni/SiO2-ImU and Ni/SBA-15-ImU catalysts present a bimodal distribution of the reduced nickel phase, with nickel metallic particles located out and into the mesoporous structure of SiO2 or the SBA-15 channels. The Ni/SBA-15-DP catalyst was found the most stable and performing system, with a very low level of carbon deposition, about an order of magnitude lower than the equivalent ImU catalyst. This outstanding performance comes from the confinement of small and homogeneous nickel particles in the mesoporous channels of SBA-15, which, in strong interaction with the support, are resistant to sintering and coke deposition during the demanding reaction conditions of DRM.
Keyphrases
  • metal organic framework
  • highly efficient
  • high temperature
  • multidrug resistant
  • reduced graphene oxide
  • ionic liquid
  • transition metal
  • carbon dioxide