Poly(alkanoyl isosorbide methacrylate)s: From Amorphous to Semicrystalline and Liquid Crystalline Biobased Materials.
Siim LaanesooOlivier BonjourJaan ParveOmar ParveLivia MattLauri VaresPatric JannaschPublished in: Biomacromolecules (2020)
We have prepared a series of 12 d-isosorbide-2-alkanoate-5-methacrylate monomers as single regioisomers with different pendant linear C2-C20 alkanoyl chains using biocatalytic and chemical acylations. By conventional radical polymerization, these monomers provided high-molecular-weight biobased poly(alkanoyl isosorbide methacrylate)s (PAIMAs). Samples with C2-C12 alkanoyl chains were amorphous with glass transition temperatures from 107 to 54 °C, while C14-C20 chains provided semicrystalline materials with melting points up to 59 °C. Moreover, PAIMAs with C13-C20 chains formed liquid crystalline mesophases with transition temperatures up to 93 °C. The mesophases were studied using polarized optical microscopy, and rheology showed stepwise changes of the viscosity at the transition temperature. Unexpectedly, a PAIMA prepared from a regioisomeric monomer (C18) showed semicrystallinity but not liquid crystallinity. Consequently, the properties of the PAIMAs were readily tunable by controlling the phase structure and transitions through the alkanoyl chain length and the regiochemistry to form fully amorphous, semicrystalline, or semi/liquid crystalline materials.