Login / Signup

Experimental and theoretical studies of the reactions of ground-state sulfur atoms with hydrogen and deuterium.

Kristopher M ThompsonYide GaoPaul MarshallHan WangLinsen ZhouYongle LiHua Guo
Published in: The Journal of chemical physics (2018)
The gas-phase kinetics of S(3P) atoms with H2 and D2 have been studied via the laser flash photolysis-resonance fluorescence technique. S atoms were generated by pulsed photolysis of CS2 at 193 nm and monitored by time-resolved fluorescence at 181 nm. The rate coefficients for H2 (k1) and D2 (k2), respectively, are summarized as k1(600-1110 K) = 3.0 × 10-9 exp-1.317×105-2.703×107K/T8.314 T/K cm3 molecule-1 s-1 and k2(770-1110 K) = 2.2 × 10-14 (T/298 K)3.55 exp(-5420 K/T) cm3 molecule-1 s-1. Error limits are discussed in the text. The rate coefficients for formation of SH(SD) + H(D) on a newly developed triplet potential energy surface were characterized via ring polymer molecular dynamics and canonical variational transition-state theory. There is excellent agreement above about 1000 K between theory and experiment. At lower temperatures, the experimental rate coefficient is substantially larger than the results computed for the adiabatic reaction, suggesting a significant role for intersystem crossing to the singlet potential energy surface at lower temperatures.
Keyphrases