Low Density Interior in Supercooled Aqueous Nanodroplets Expels Ions to the Subsurface.
Shahrazad M A MalekVictor KwanIvan Saika-VoivodStyliani ConstaPublished in: Journal of the American Chemical Society (2021)
The interaction between water and ions within droplets plays a key role in the chemical reactivity of atmospheric and man-made aerosols. Here we report direct computational evidence that in supercooled aqueous nanodroplets a lower density core of tetrahedrally coordinated water expels the cosmotropic ions to the denser and more disordered subsurface. In contrast, at room temperature, depending on the nature of the ion, the radial distribution in the droplet core is nearly uniform or elevated toward the center. We analyze the spatial distribution of a single ion in terms of a reference electrostatic model. The energy of the system in the analytical model is expressed as the sum of the electrostatic and surface energy of a deformable droplet. The model predicts that the ion is subject to a harmonic potential centered at the droplet's center of mass. We name this effect "electrostatic confinement". The model's predictions are consistent with the simulation findings for a single ion at room temperature but not at supercooling. We anticipate this study to be the starting point for investigating the structure of supercooled (electro)sprayed droplets that are used to preserve the conformations of macromolecules originating from the bulk solution.