Login / Signup

Dynamic Liquid-Liquid Interface: Applying a Spinning Interfacial Microreactor to Actively Converge Biphasic Reactants for the Enhanced Interfacial Reaction.

Li Shiuan NgCarice ChongXin Yi LokVeronica PereiraZhi Zhong AngXuemei HanHaitao LiHiang Kwee Lee
Published in: ACS applied materials & interfaces (2022)
A liquid-liquid interfacial reaction combines reactants with large polarity disparity to achieve greener and more efficient chemistry that is otherwise challenging in traditional single-phase systems. However, current interfacial approaches suffer from the need for a large amount of solvent/reactant/emulsifier and poor reaction performance arising from intrinsic thermodynamic constraints. Herein, we achieve an efficient interfacial reaction by creating a magnetic-responsive, microscale liquid-liquid interface and exploit its dynamic spinning motion to generate vortex-like hydrodynamic flows that rapidly converge biphasic reactants to the point-of-reaction. Notably, the spinning of this functional interface at 800 rpm boosts the reaction efficiency and its apparent equilibrium constant by > 500-fold and 10 5 -fold, respectively, higher than conventional methods that utilize bulk and/or non-dynamic liquid interfaces, even with external mechanical stirring. By driving reaction equilibrium toward favorable product formation, our unique design offers enormous opportunities to realize efficient multiphasic reactions crucial for diverse applications in chemical synthesis, environmental remediation, and even molecular recycling.
Keyphrases
  • electron transfer
  • ionic liquid
  • molecular dynamics simulations
  • molecular dynamics
  • perovskite solar cells
  • risk assessment
  • molecularly imprinted
  • human health
  • drug discovery
  • solid state