Login / Signup

Detecting cognitive impairment in HIV-infected individuals using mutual connectivity analysis of resting state functional MRI.

Anas Z AbidinAdora M DSouzaGiovanni SchifittoAxel Wismüller
Published in: Journal of neurovirology (2020)
It is estimated that more than 50% of the individuals affected with Human Immunodeficiency Virus (HIV) present deficits in multiple cognitive domains, collectively known as HIV-associated neurocognitive disorder (HAND). Early stages of brain injury may be clinically silent but potentially measurable via neuroimaging. A total of 40 subjects (20 HIV positive and 20 age-matched controls) volunteered for the study. All subjects underwent a standard battery of neuropsychological tests used for the clinical diagnosis of HAND. Fourteen HIV+ and five healthy subjects showed signs of neurological impairment. Connectivity was computed using mutual connectivity analysis (MCA) with generalized radial basis function neural network, a framework for quantifying non-linear connectivity as well as conventional correlation from 160 regional time-series that were extracted based on the Dosenbach (DOS) atlas. We subsequently applied graph theoretic as well as network analysis approaches for characterizing the connectivity matrices obtained and localizing between-group differences. We focused on trying to detect cognitive impairment using the subset of 29 (14 subjects with HAND and 15 cognitively normal controls) subjects. For the global analysis, significant differences (p < 0.05) were seen in the variance in degree, modularity and Smallworldness. Regional analysis revealed changes occurring mainly in portions of the lateral occipital cortex and the cingulate cortex. Furthermore, using Network Based Statistics (NBS), we uncovered an affected sub-network of 19 nodes comprising predominantly of regions of the default mode network. Similar analysis using the conventional correlation method revealed no significant results at a global scale, while regional analysis shows some differences spread across resting state networks. These results suggest that there is a subtle reorganization occurring in the topology of brain networks in HAND, which can be captured using improved connectivity analysis.
Keyphrases