Selective Sparse Sampling of Water Droplets in Oil with Acoustic Tweezers.
Siying LinAntoine RiaudJia ZhouPublished in: ACS sensors (2024)
In microfluidics, water droplets are often used as independent biochemical microreactor units, enabling the implementation of massively parallel screening assays where only a few of the reacting water droplets yield a positive result. However, sampling the product of these few successful reactions is an unsolved challenge. One possible solution is to use acoustic tweezers, which are lab-free, easily miniaturized, and biocompatible manipulation tools, and existing acoustic tweezers manipulating particles or cells, and water droplet manipulation in oil with an acoustic tweezer is absent. The first challenge in attempting to recover a few water droplets from a large batch is the selective manipulation of water droplets in an oil system. In this paper, we trap and manipulate single water droplets in oil using integrated single-beam (focused beam/vortex beam) acoustic tweezers for the first time. We find that water droplets with a diameter smaller than half a wavelength are trapped by acoustic vortices, while larger ones are better captured by focused acoustic beams. It is the first step to extract the target water droplet microreactors (positive ones) in an oil system and analyze their content. Compared to previous techniques, such as fluorescence-activated cell sorting (FACS), our technique is sparse, meaning that the sampling time is proportional to the number of droplets required and very insensitive to the total number of microreactors, making it well suited for large-scale screening assays.