Comparison of Volatile Compounds Contributing to Flavor of Wild Lowbush ( Vaccinium augustifolium ) and Cultivated Highbush ( Vaccinium corymbosum ) Blueberry Fruit Using Gas Chromatography-Olfactometry.
Charles F ForneySongshan QiuMichael A JordanDylan McCarthySherry FillmorePublished in: Foods (Basel, Switzerland) (2022)
The flavor of blueberry fruit products is an important parameter determining consumer satisfaction. Wild lowbush blueberries are primarily processed into products, but their flavor chemistry has not been characterized. The objective of this study was to characterize the aroma chemistry of lowbush blueberries and compare it with that of highbush. Aroma volatiles of lowbush blueberries from four Canadian provinces and five highbush blueberry cultivars were isolated using headspace solid-phase microextraction (SPME) and characterized using gas chromatography-olfactometry (GC-O) and 2-dimensional gas chromatography-time of flight-mass spectrometry (GC×GC-TOF-MS). Lowbush fruit volatiles were composed of 48% esters, 29% aldehydes and 4% monterpenoids compared to 48% aldehydes, 26% monoterpenoids and 3% esters in highbush fruit. Twenty-three aroma-active peaks were identified in lowbush compared to forty-two in highbush fruit using GC-O. The most aroma-active compounds in lowbush fruit were ethyl 2-methylbutanoate, methyl 2-methylbutanoate, methyl 3-methylbutanoate, ethyl 3-methylbutanoate and ethyl propanoate compared to geraniol, ( Z )-3-hexen-1-ol, 1-octen-3-one, α-terpineol and linalool in highbush fruit. The aroma volatile composition was more consistent among lowbush fruit samples than the five highbush cultivars. Aroma-active GC-O peaks were described more frequently as "floral", "fruity", "sweet" and "blueberry" in lowbush than in highbush fruit. Results suggest wild lowbush blueberries would provide "fruitier" and "sweeter" flavors to food products than cultivated highbush fruit.