Evaluation of Sampling Algorithms Used for Bayesian Uncertainty Quantification of Molecular Dynamics Force Fields.
Abhishek T SoseTroy GustkeFangxi WangGaurav AnandSanjana PasupuletiAditya A SavaraSanket A DeshmukhPublished in: Journal of chemical theory and computation (2024)
New Bayesian parameter estimation methods have the capability to enable more physically realistic and reliable molecular dynamics (MD) simulations by providing accurate estimates of uncertainties of force-field (FF) parameters and associated properties. However, the choice of which Bayesian parameter estimation algorithm to use has not been widely investigated, despite its impact on the effective exploration of parameter space. Here, using a case example of the Embedded Atom Method (EAM) FF parameters, we investigated the ramifications of several of the algorithm choices. We found that Ensemble Slice Sampling (ESS) and Affine-Invariant Ensemble Sampling (AIES) demonstrate a new level of superior performance, culminating in more accurate parameter and property estimations with tighter uncertainty bounds, compared to traditional methods such as Metropolis-Hastings (MH), Gradient Search (GS), and Uniform Random Sampler (URS). We demonstrate that Bayesian Uncertainty Quantification with ESS and AIES leads to significantly more accurate and reliable predictions of the FF parameters and properties. The results suggest that ESS and AIES should be used to obtain more accurate parameter and uncertainty estimations while providing deeper physical insights.