Sustainable catalysts for efficient triazole synthesis: an immobilized triazine-based copper-NNN pincer complex on TiO 2 .
Mitra EsfandiariGholamhossein MohammadnezhadOluseun AkintolaFelix OttoTorsten FritzWinfried PlassPublished in: Dalton transactions (Cambridge, England : 2003) (2023)
The multistep synthesis of a hybrid material based on a TiO 2 core with an immobilized triazine-based copper(II)-NNN pincer complex is reported. The formation of the material was confirmed by FT-IR spectroscopy and elemental and thermogravimetric analyses, and the loading by copper ions was quantified by ICP/OES analysis. The properties of the hybrid material were further investigated by X-ray photoelectron spectroscopy (XPS), contiuous wave electron spin resonance (CW-ESR), UV-vis spectroscopy, and argon sorption. Efficient and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles was achieved by employing the hybrid material as a catalyst in a mixture of H 2 O/EtOH as a green solvent with excellent catalytic activity with a TOF up to 495 h -1 at 50 °C. The reusability of the prepared hybrid material in the catalytic reaction was possible over five consecutive runs without significant loss of catalytic activity. The described method represents an effective way to ensure sustainable use of pincer complexes in catalytic systems by immobilizing them on solid supports, resulting in a hybrid organic-inorganic catalyst platform.
Keyphrases
- ionic liquid
- high resolution
- single molecule
- room temperature
- highly efficient
- quantum dots
- mass spectrometry
- magnetic resonance imaging
- ms ms
- reduced graphene oxide
- water soluble
- magnetic resonance
- gold nanoparticles
- oxide nanoparticles
- density functional theory
- aqueous solution
- heavy metals
- molecular dynamics
- liquid chromatography