Login / Signup

Lysogeny destabilizes computationally simulated microbiomes.

Robert Tucker GilmanMark R MuldoonSpyridon MegremisDavid L RobertsonGuliko NatroshviliPapadopoulos G Nikolaos
Published in: Ecology letters (2024)
Microbiomes are ecosystems, and their stability can impact the health of their hosts. Theory predicts that predators influence ecosystem stability. Phages are key predators of bacteria in microbiomes, but phages are unusual predators because many have lysogenic life cycles. It has been hypothesized that lysogeny can destabilize microbiomes, but lysogeny has no direct analog in classical ecological theory, and no formal theory exists. We studied the stability of computationally simulated microbiomes with different numbers of temperate (lysogenic) and virulent (obligate lytic) phage species. Bacterial populations were more likely to fluctuate over time when there were more temperate phages species. After disturbances, bacterial populations returned to their pre-disturbance densities more slowly when there were more temperate phage species, but cycles engendered by disturbances dampened more slowly when there were more virulent phage species. Our work offers the first formal theory linking lysogeny to microbiome stability.
Keyphrases
  • genetic diversity
  • climate change
  • pseudomonas aeruginosa
  • healthcare
  • public health
  • mental health
  • social media
  • health information
  • health promotion