Theoretical Investigation of the Electronic Spectra of Cadmium Chalcogenide 2D Nanoplatelets.
Kiet A NguyenRuth PachterPaul N DayPublished in: The journal of physical chemistry. A (2022)
Although colloidal cadmium chalcogenide 2D nanoplatelets (NPLs) have recently demonstrated strongly enhanced one- and two-photon absorption (OPA, TPA) spectra, an understanding of the effects of quantum confinement in the lateral and vertical (thickness) dimensions is mostly lacking. In this work, we investigate theoretically CdS and CdSe NPLs passivated with formate and acetate ligands with thicknesses of two and three monolayers (MLs) and different lateral dimensions. Initial structures for CdS nanoplatelets were obtained using our recently developed deep neural network potential, and the low-energy geometries were subsequently optimized using density functional theory (DFT). Linear- and nonlinear-response calculations using time-dependent DFT (TDDFT) and the simplified Tamm-Dancoff approximation (sTDA) demonstrated good agreement between measured spectra and calculated TDDFT and sTDA spectra for 2 and 3 ML NPLs. The OPA red-shifts from 2 to 3 ML NPLs can be attributed to the electron delocalization in the lateral and vertical directions. TPA responses for CdS and CdSe NPLs were found to be dominated by weakly absorbing and forbidden OPA states.