Login / Signup

Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.

Shubham KaushikKazuhiko MatsumotoRika Hagiwara
Published in: ACS applied materials & interfaces (2021)
Although high-capacity negative electrode materials are seen as a propitious strategy for improving the performance of lithium-ion batteries (LIBs), their advancement is curbed by issues such as pulverization during the charge/discharge process and the formation of an unstable solid electrolyte interphase (SEI). In particular, electrolytes play a vital role in determining the properties of an SEI layer. Thus, in this study, we investigate the performance of a red phosphorus/acetylene black composite (P/AB) prepared by high-energy ball milling as a negative electrode material for LIBs using organic and ionic liquid (IL) electrolytes. Galvanostatic tests performed on half cells demonstrate high discharge capacities in the 1386-1700 mAh (g-P/AB)-1 range along with high Coulombic efficiencies of 85.3-88.2% in the first cycle, irrespective of the electrolyte used. Upon cycling, the Li[FSA]-[C2C1im][FSA] (FSA- = bis(fluorosulfonyl)amide and C2C1im+ = 1-ethyl-3-methylimidazolium) IL electrolyte (2:8 in mol) demonstrates a high capacity retention of 78.8% after 350 cycles, whereas significant capacity fading is observed in the Li[PF6] and Li[FSA] organic electrolytes. Electrochemical impedance spectroscopy conducted with cycling revealed lower interfacial resistance in the IL electrolyte than in the organic electrolytes. Scanning electron microscopy and X-ray photoelectron spectroscopy after cycling in different electrolytes evinced that the IL electrolyte facilitates the formation of a robust SEI layer comprising multiple layers of sulfur species resulting from FSA- decomposition. A P/AB|LiFePO4 full cell using the IL electrolyte showed superior capacity retention than organic electrolytes and a high energy density under ambient conditions. This work not only illuminates the improved performance of a phosphorous-based negative electrode alongside ionic liquid electrolytes but also displays a viable strategy for the development of high-performance LIBs, especially for large-scale applications.
Keyphrases