Login / Signup

Modelling the modulation of cortical Up-Down state switching by astrocytes.

Lisa Blum MoyseHugues Berry
Published in: PLoS computational biology (2022)
Up-Down synchronization in neuronal networks refers to spontaneous switches between periods of high collective firing activity (Up state) and periods of silence (Down state). Recent experimental reports have shown that astrocytes can control the emergence of such Up-Down regimes in neural networks, although the molecular or cellular mechanisms that are involved are still uncertain. Here we propose neural network models made of three populations of cells: excitatory neurons, inhibitory neurons and astrocytes, interconnected by synaptic and gliotransmission events, to explore how astrocytes can control this phenomenon. The presence of astrocytes in the models is indeed observed to promote the emergence of Up-Down regimes with realistic characteristics. Our models show that the difference of signalling timescales between astrocytes and neurons (seconds versus milliseconds) can induce a regime where the frequency of gliotransmission events released by the astrocytes does not synchronize with the Up and Down phases of the neurons, but remains essentially stable. However, these gliotransmission events are found to change the localization of the bifurcations in the parameter space so that with the addition of astrocytes, the network enters a bistability region of the dynamics that corresponds to Up-Down synchronization. Taken together, our work provides a theoretical framework to test scenarios and hypotheses on the modulation of Up-Down dynamics by gliotransmission from astrocytes.
Keyphrases
  • neural network
  • spinal cord
  • emergency department
  • oxidative stress
  • spinal cord injury
  • induced apoptosis
  • cell death
  • pi k akt
  • cerebral ischemia
  • drug induced
  • electronic health record