Convolutional neural network-based quantitative structure-activity relationship and fingerprint analysis against inhibitors of anthrax lethal factor.
Madhulata KumariNaidu SubbaraoPublished in: Future medicinal chemistry (2023)
Aim: To develop a one-dimensional convolutional neural network-based quantitative structure-activity relationship (1D-CNN-QSAR) model to identify novel anthrax inhibitors and analyze chemical space. Methods: We developed a 1D-CNN-QSAR model to identify novel anthrax inhibitors. Results: The statistical results of the 1D-CNN-QSAR model showed a mean square error of 0.045 and a predicted correlation coefficient of 0.79 for the test set. Further, chemical space analysis showed more than 80% fragment pair similarity, with activity cliffs associated with carboxylic acid, 2-phenylfurans, N -phenyldihydropyrazole, N -phenylpyrrole, furan, 4-methylene-1H-pyrazol-5-one, phenylimidazole, phenylpyrrole and phenylpyrazolidine. Conclusion: These fragments may serve as the basis for developing potent novel drug candidates for anthrax. Finally, we concluded that our proposed 1D-CNN-QSAR model and fingerprint analysis might be used to discover potential anthrax drug candidates.