Heterogeneous CNF/MoO 3 nanofluidic membranes with tunable surface plasmon resonances for solar-osmotic energy conversion.
Mengmeng ZhengPei LiuPengfei YanTeng ZhouXiangbin LinXin LiLiping WenQun XuPublished in: Materials horizons (2024)
Two-dimensional (2D) nanofluidic membranes are competitive candidates for osmotic energy harvesting and have been greatly developed. However, the use of diverse inherent characteristics of 2D nanosheets, such as electronic or optoelectronic properties, to achieve intelligent ion transport, still lacks sufficient exploration. Here, a cellulose nanofiber/molybdenum oxide (CNF/MoO 3 ) heterogeneous nanofluidic membrane with high performance solar-osmotic energy conversion is reported, and how surface plasmon resonances (SPR) regulate selective cation transport is revealed. The SPR of amorphous MoO 3 endows the heterogeneous nanofluidic membranes with tunable surface charge and good photothermal conversion. Through DFT calculations and finite element modeling, the regulation of electronic and optoelectronic properties on the surface of materials by SPR and the influence of surface charge density and temperature gradient on ion transport in nanofluidic membranes are demonstrated. By mixing 0.01/0.5 M NaCl solutions using SPR and photothermal effects, the power density can achieve a remarkable value of ≈13.24 W m -2 , outperforming state-of-the-art 2D-based nanofluidic membranes. This work first reveals the regulation and mechanism of SPR on ion transport in nanofluidic membranes and systematically studies photon-electron-ion interactions in nanofluidic membranes, which could also provide a new viewpoint for promoting osmotic energy conversion.