Login / Signup

Two Stable Zn-Cluster-Based Metal-Organic Frameworks with Breathing Behavior: Synthesis, Structure, and Adsorption Properties.

Liang KanJun CaiZhuwei JinGuanghua LiYun-Ling LiuLiren Xu
Published in: Inorganic chemistry (2018)
Two stable Zn-cluster-based MOFs, [Zn9(btz)12(atdbc)3(DMF)]·3DMF·12H2O (compound 1, Hbtz = 1 H-benzotriazole, H2atdbc = 4,4'-(4-amino-1,2,4-triazol-3,5-diyl)dibenzoic acid, DMF = N, N-dimethylformamide) and [Zn4(btz)6(bcpt)]·3DMF (compound 2, H2bcpt = 3,5-bis(4'-carboxy-phenyl)-1,2,4-triazole), have been successfully constructed by adopting the mixed ligands approach. Both the compounds exhibit high chemical stability under aqueous solution and common organic solvents. Especially, compounds 1 and 2 can be stable in pH = 2 and pH = 12 solutions. Meanwhile, compound 1 exhibits good ability to selectively separate CO2 from CH4. CO2 over CH4 selectivity is 5.2 (0.5/0.5) and 5.7 (0.05/0.95) at 298 K under 1 bar, respectively, which may be used for the separation of gases in industrial applications. Moreover, compound 1 displays breathing behavior for small-molecule gases (N2, CO2, C2H6, and C3H8), and compound 2 only exhibits the same phenomenon for CO2 adsorption because of its ultramicroporous channels.
Keyphrases
  • aqueous solution
  • heavy metals
  • small molecule
  • metal organic framework
  • wastewater treatment
  • ionic liquid
  • room temperature
  • risk assessment