Login / Signup

Refocusing in Situ Electron Microscopy: Moving beyond Visualization of Nanoparticle Self-Assembly To Gain Practical Insights into Advanced Material Fabrication.

Taylor J Woehl
Published in: ACS nano (2019)
Despite incredible progress in preparing extended nanoparticle superlattices by self-assembly, theoretically predicted collective properties of extended nanoparticle superlattices are rarely correlated to observations due to the presence of defects. Enhanced fundamental understanding of the kinetics involved in nanoparticle superlattice self-assembly, specifically defect formation and annealing kinetics and mechanisms, is needed to prepare defect-free nanoparticle superlattices. In situ transmission electron microscopy (TEM) enables direct visualization of nanoparticle self-assembly phenomena in real time and at atomic spatial resolution; however, effective translation of in situ TEM data into new predictive models and material synthesis design rules remains a persistent challenge. Recent work by Ondry et al. in this issue of ACS Nano utilized atomic resolution in situ TEM to establish defect removal kinetics in epitaxially attached CdSe nanocrystal pairs, revealing a set of practical guidelines for minimizing defect formation in extended nanoparticle solids. Motivated by this work, in this Perspective, I explore and discuss the most effective and impactful uses of in situ TEM for nanoscience research and the associated technical barriers for performing in situ TEM measurements that are meaningful to bulk-scale self-assembly experiments.
Keyphrases
  • electron microscopy
  • iron oxide
  • quantum dots
  • machine learning
  • artificial intelligence
  • clinical practice
  • data analysis
  • low cost