Login / Signup

Nanoarchitectonics for Biodegradable Superabsorbent Based on Carboxymethyl Starch and Chitosan Cross-Linked with Vanillin.

Elżbieta CzarneckaJacek NowaczykMiroslawa ProchonStefan Cichosz
Published in: International journal of molecular sciences (2022)
Due to the growing demand for sustainable hygiene products (that will exhibit biodegradability and compostability properties), the challenge of developing a superabsorbent polymer that absorbs significant amounts of liquid has been raised so that it can be used in the hygiene sector in the future. The work covers the study of the swelling and dehydration kinetics of hydrogels formed by grafting polymerization of carboxymethyl starch (CMS) and chitosan (Ch). Vanillin (Van) was used as the crosslinking agent. The swelling and dehydration kinetics of the polymers were measured in various solutes including deionized water buffers with pH from 1 to 12 and in aqueous solutions of sodium chloride at 298 and 311 K. The surface morphology and texture properties of the analyzed hydrogels were observed by scanning electron microscopy (SEM). The influence of this structure on swelling and dehydration is discussed. Fourier transform infrared (FTIR) analyses confirmed the interaction between the carboxymethyl starch carbonyl groups and the chitosan amino groups in the resulting hydrogels. Additionally, spectroscopic analyses confirmed the formation of acetal crosslink bridges including vanillin molecules. The chemical dynamics studies revealed that new hydrogel dehydration kinetics strongly depend on the vanillin content. The main significance of the study concerns the positive results of the survey for the new superabsorbent polymer material, coupling high fluid absorbance with biodegradability. The studies on biodegradability indicated that resulting materials show good environmental degradability characteristics and can be considered true biodegradable superabsorbent polymers.
Keyphrases
  • drug delivery
  • hyaluronic acid
  • wound healing
  • electron microscopy
  • drug release
  • tissue engineering
  • computed tomography
  • magnetic resonance
  • contrast enhanced
  • ionic liquid
  • current status