Optoelectronic Current through Unbiased Monolayer Amorphous Carbon Nanojunctions.
Antonio J Garzón-RamírezNicolas GastelluLena SiminePublished in: The journal of physical chemistry letters (2022)
Monolayer amorphous carbon (MAC) is a recently synthesized disordered 2D carbon material. An ensemble of MAC nanofragments contains diverse manifestations of lattice disorder, and because of disorder the key unifying characteristic of this ensemble is poor electronic conductance. Curiously, our computational analysis of the electronic properties of MAC nanofragments revealed an additional commonality: a robust presence of charge-transfer character for electronic transitions from the occupied to virtual orbitals. This charge-transfer property suggests possible applications in optoelectronics. In this Letter, we demonstrate computationally that a laser pulse induces directional electronic currents in unbiased MAC nanojunctions and discuss the effects of pulse intensity on the magnitude of electron transfer.