Login / Signup

Regioselective synthesis of C3 alkylated and arylated benzothiophenes.

Harry J ShrivesJosé A Fernández-SalasChristin HedtkeAlexander P PulisDavid J Procter
Published in: Nature communications (2017)
Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon-hydrogen bonds, found in all organic molecules, can be directly converted into carbon-carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon-hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions.
Keyphrases
  • healthcare
  • risk assessment
  • human health
  • quantum dots
  • climate change
  • hepatitis c virus
  • drinking water
  • ionic liquid
  • health risk assessment
  • essential oil