PK/PD modeling and simulation of the in vitro activity of the combinations of isavuconazole with echinocandins against Candida auris.
Unai CaballeroElena ErasoGuillermo QuindósValvanera VozmedianoStephan SchmidtNerea JauregizarPublished in: CPT: pharmacometrics & systems pharmacology (2023)
In vitro combination of echinocandins and isavuconazole against the emerging species Candida auris is mainly synergistic. However, this combination has not been evaluated in clinical settings. A pharmacokinetic/pharmacodynamic modeling and simulation approach based on in vitro data may be helpful to further study the therapeutic potential of these combinations. Therefore, the aims of this study were to characterize the time course of growth and killing of C. auris in response to the combination of the three approved echinocandins and isavuconazole using a semimechanistic model and to perform model-based simulations in order to predict the in vivo response to combination therapy. In vitro static time-kill curve data for isavuconazole and echinocandins combinations against six blood isolates of C. auris were best modeled considering the total killing of the fungal population as dependent on the additive effects of both drugs. Once assessed, the predictive performance of the model using simulations of different dosing and fungal susceptibility scenarios were conducted. Model-based simulations revealed that none of the combinations at standard or higher dosages would be effective against the studied isolates of C. auris and it was predicted that the combinations of isavuconazole with anidulafungin or caspofungin would be effective for minimum inhibitory concentrations up to 0.03 and 0.06 mg/L respectively, whereas the combination with micafungin would lead to treatment failure. The current approach highlights the importance of bridging the in vitro results to the clinic.