Muconic Acid Production via Alternative Pathways and a Synthetic "Metabolic Funnel".
Brian ThompsonShawn PughMichael MachasDavid R NielsenPublished in: ACS synthetic biology (2017)
Muconic acid is a promising platform biochemical and precursor to adipic acid, which can be used to synthesize various plastics and polymers. In this study, the systematic construction and comparative evaluation of a modular network of non-natural pathways for muconic acid biosynthesis was investigated in Escherichia coli, including via three distinct and novel pathways proceeding via phenol as a common intermediate. However, poor recombinant activity and high promiscuity of phenol hydroxylase ultimately limited "phenol-dependent" muconic acid production. A fourth pathway proceeding via p-hydroxybenzoate, protocatechuate, and catechol was accordingly developed, though with muconic acid titers by this route reaching just 819 mg/L, its performance lagged behind that of the established, "3-dehydroshikimiate-derived" route. Finally, these two most promising pathways were coexpressed in parallel to create a synthetic "metabolic funnel" that, by enabling maximal net precursor assimilation and flux while preserving native chorismate biosynthesis, nearly doubled muconic acid production to up to >3.1 g/L at a glucose yield of 158 mg/g while introducing only a single auxotrophy. This generalizable, "funneling" strategy is expected to have broad applications in metabolic engineering for further enhancing production of muconic acid, as well as other important bioproducts of interest.