Login / Signup

Insights into the Photoinduced Isomerization Mechanisms of a N,C-Chelate Organoboron Compound: A Theoretical Study.

Hong-Yang ZhuQuan-Song Li
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
As the first discovered organoboron compound with photochromic property, B(ppy)Mes2 (ppy=2-phenylpyridine, Mes=mesityl) displays rich photochemistry that constitutes a solid foundation for wide applications in optoelectronic fields. In this work, we investigated the B(ppy)Mes2 to borirane isomerization mechanisms in the three lowest electronic states (S0 , S1 , and T1 ) based on the complete active space self-consistent field (CASSCF) and its second-order perturbation (CASPT2) methods combined with time-dependent density functional theory (TD-DFT) calculations. Our results show that the photoisomerization in the S1 state is dominant, which is initiated by the cleavage of the B-Cppy bond. After overcoming a barrier of 0.5 eV, the reaction pathway leads to a conical intersection between the S1 and S0 states (S1 /S0 )x , from which the decay path may go back to the reactant B(ppy)Mes2 via a closed-shell intermediate (Int1-S0 ) or to the product borirane via a biradical intermediate (Int2-S0 ). Although triplet states are probably involved in the photoinduced process, the possibility of the photoisomerization in T1 state is very small owing to the weakly allowed S1 →T1 intersystem crossing and the high energy barrier (0.77 eV). In addition, we found the photoisomerization is thermally reversible, which is consistent with the experimental observations.
Keyphrases
  • density functional theory
  • molecular dynamics
  • electron transfer
  • mass spectrometry
  • atomic force microscopy
  • molecular dynamics simulations