Login / Signup

Plasmonic Au-Ag Janus Nanoparticle Engineered Ratiometric Surface-Enhanced Raman Scattering Aptasensor for Ochratoxin A Detection.

Fangjie ZhengWei KeLixia ShiHan LiuYuan Zhao
Published in: Analytical chemistry (2019)
Ochratoxin A (OTA), a toxic mycotoxin, poses severe risks to environment and human health. Herein, we develop a ratiometric surface-enhanced Raman scattering (SERS) aptasensor based on internal standard (IS) methods for the sensitive and reproducible quantitative detection of OTA. Au-Ag Janus nanoparticles (NPs) are successfully synthesized under the guidance of 2-mercaptobenzoimidazole-5-carboxylic acid (MBIA), which possesses intrinsic Raman signals, thus no additional modification with a Raman reporter on NPs is required. In addition, Au-Ag Janus NPs exhibit amplified and stable SERS activity. MXenes nanosheets generate a unique and stable Raman signal, making them an ideal IS for quantitative Raman analysis. In principle, Au-Ag Janus NPs are assembled with MXenes nanosheets depending on hydrogen bond and the chelation interaction between MXenes nanosheets and OTA aptamers. In the presence of OTA, Au-Ag Janus NPs are dissociated from MXenes nanosheets due to the formation of aptamer/OTA complex, leading to the attenuation of Raman signal of Au-Ag Janus NPs, and meanwhile, the signal of MXenes nanosheets remain constant. Quantitatively, upon correction by the IS Raman signals, sensitive and quantitative detection can be achieved with the limit of detection (LOD) of 1.28 pM for OTA. Our results suggest that this ratiometric SERS aptasensor is a powerful tool which shows great promise for applications in complex systems.
Keyphrases