Login / Signup

Conformational Analysis of n→π* Interactions in Collagen Triple Helix Models.

Felicia A EtzkornRachel I WareAmanda M PesterDiego Troya
Published in: The journal of physical chemistry. B (2019)
Ab initio calculations of three models of collagen at positions Pro-Pro-Gly (1), Pro-Gly-Pro (2), and Gly-Pro-Pro (3) were performed to assess the conformational variation of n→π* contributions to the stability of the collagen triple helix. Full conformational analyses by relaxed potential-energy scans of the Ψ dihedral angle of the central residue in models 1, 2, and 3 revealed the presence of several n→π* interactions. In model 2, with Gly as the central residue, both the Φ and Ψ dihedral angles of Gly were scanned. Most minima of each model contained one or two n→π* interactions, with pyramidalization at the π* carbon. We also observed pyramidalization at the n→π* donor amide nitrogens. Minima with hydrogen-bond or non-native n→π* interactions compete with the collagen stabilizing n→π* interactions. The collagen-like n→ re-π* conformation was found as the global minimum only in model 3. The global minimum of 1 had a 5-membered ring hydrogen bond with an additional weak n→ si-π* interaction. The global minimum of 2 was in the extended conformation. We predict that the n→π* interactions found in native collagen, while individually small, cumulatively contribute to the stability of the triple helix conformation of collagen.
Keyphrases