Login / Signup

Interfacial Effect of Hydration Structures of Hydroxyapatite Nanoparticle Films on Protein Adsorption and Cell Adhesion States.

Tania Guadalupe Peñaflor GalindoMotohiro Tagaya
Published in: ACS applied bio materials (2019)
The synthesized elliptical hydroxyapatite (E-HAp) and needle-like HAp (N-HAp) nanoparticles (NPs) were electrophoretically deposited on a gold (Au) substrate. A comparative study of the hydration layers on E-HAp, N-HAp, and Au films was achieved to investigate the interfacial effect of the hydration layers on the conformation of the adsorbed fibrinogen (Fgn) and fibroblast adhesion properties. As a result, the ratios of three types of hydration layer states (free water, intermediate water, nonfreezing water) analyzed by a Fourier transform infrared (FT-IR) spectral deconvolution of the O-H stretching absorption band were investigated. The ratio of the bonding water state (i.e., intermediate and nonfreezing water molecules) is almost the same between two HAp films, and the E-HAp film with an elliptical shape and smaller particle size exhibited the smallest ratio of nonfreezing water, which can suppress the denaturation of the adsorbed protein. Subsequently, FT-IR spectral deconvolution results of the amide I band of the adsorbed Fgn on the E-HAp film indicated the higher proportion of α-helix and β-sheet structures as compared with those on the N-HAp and Au films, suggesting that the smaller proportion of nonfreezing waters would play a significant role in the stereoscopic Fgn conformation. In the culture of fibroblasts, FT-IR spectra of the adhered cells on the E-HAp, N-HAp, and Au films exhibited different absorbance intensities of the amide A, I, II, and III bands, suggesting a different amount of collagen-producing states by the cells, which were also supported by immunostaining results of the collagen type I. Therefore, the different hydration structures on the films clearly influenced the conformation of the adsorbed protein, and the preferential conformation was found at the interfaces between the fibroblasts and the underground E-HAp films.
Keyphrases