Simultaneous Heavy Metal-Polycyclic Aromatic Hydrocarbon Removal by Native Tunisian Fungal Species.
Neila HkiriDario Rafael Olicón-HernándezClementina PozoChedly ChouchaniNedra AssesElisabet ArandaPublished in: Journal of fungi (Basel, Switzerland) (2023)
Multi-contamination by organic pollutants and toxic metals is common in anthropogenic and industrial environments. In this study, the five fungal strains Chaetomium jodhpurense (MH667651.1), Chaetomium maderasense (MH665977.1), Paraconiothyrium variabile (MH667653.1), Emmia lacerata , and Phoma betae (MH667655.1), previously isolated in Tunisia, were investigated for the simultaneous removal and detoxification of phenanthrene (PHE) and benzo[a]anthracene (BAA), as well as heavy metals (HMs) (Cu, Zn, Pb and Ag) in Kirk's media. The removal was analysed using HPLC, ultra-high performance liquid chromatography (UHPLC) coupled to a QToF mass spectrometer, transmission electron microscopy, and toxicology was assessed using phytotoxicity ( Lepidium sativum seeds) and Microtox ® ( Allivibrio fisherii ) assays. The PHE and BAA degradation rates, in free HMs cultures, reached 78.8% and 70.7%, respectively. However, the addition of HMs considerably affected the BAA degradation rate. The highest degradation rates were associated with the significant production of manganese-peroxidase, lignin peroxidase, and unspecific peroxygenase. The Zn and Cu removal efficacy was considerably higher with live cells than dead cells. Transmission electron microscopy confirmed the involvement of both bioaccumulation and biosorption processes in fungal HM removal. The environmental toxicological assays proved that simultaneous PAH and HM removal was accompanied by detoxification. The metabolites produced during co-treatment were not toxic for plant tissues, and the acute toxicity was reduced. The obtained results indicate that the tested fungi can be applied in the remediation of sites simultaneously contaminated with PAHs and HMs.
Keyphrases
- heavy metals
- health risk
- health risk assessment
- risk assessment
- ms ms
- electron microscopy
- sewage sludge
- human health
- tandem mass spectrometry
- induced apoptosis
- ultra high performance liquid chromatography
- simultaneous determination
- cell cycle arrest
- gene expression
- high resolution
- escherichia coli
- drinking water
- nitric oxide
- high throughput
- hydrogen peroxide
- hepatitis b virus
- quantum dots
- ionic liquid
- signaling pathway
- aqueous solution
- cell death
- amino acid
- smoking cessation
- drug induced
- high speed