Direct Determination of Absolute Radical Quantum Yields in Hydroxyl and Sulfate Radical-Based Treatment Processes.
Yiqi YanYunxiang MengKanying MiuJannis WenkCort AnastasioRichard SpinneyChong-Jian TangRuiyang XiaoPublished in: Environmental science & technology (2024)
The absolute radical quantum yield ( Φ ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H 2 O 2 and peroxydisulfate (PDS), the values of Φ •OH and Φ SO 4 • - at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ • OH PMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ • OH PMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to Φ SO 4 • - PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ , serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.