Login / Signup

Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation.

Han XueYang FuYouhua LuDezhao HaoKaiyong LiGuoying BaiZhong-Can Ou-YangJian-Jun WangXin Zhou
Published in: Journal of the American Chemical Society (2021)
The spontaneous freezing of microdroplets around 233 K has long been regarded as the occurrence of homogeneous ice nucleation. The corresponding temperature has been directly regarded as the homogeneous ice nucleation temperature, which is an intrinsic character of water. However, many recent investigations indicate that the spontaneous freezing may be still induced by surfaces of the water microdroplets or the residual impurities inside. Therefore, it is highly desired to reveal with solid evidence the exact origin of the spontaneous freezing. Here we show with no ambiguity that the spontaneous freezing between 233 and 235 K is actually triggered by the surface of microdroplets, as the nucleation rate is found to be proportional to the surface area of droplets, via systematically investigating the freezing of water droplets with varying sizes under various cooling rates followed by a new approach in data analysis. The conclusion is further consolidated by published experimental data from other groups when using our data analysis approach. This study is critical for understanding the sources of "no-man's land" and features of homogeneous nucleation, as well as studying the structure and properties of deeply supercooled liquid water.
Keyphrases
  • data analysis
  • risk assessment
  • systematic review
  • climate change
  • gene expression
  • machine learning
  • single cell
  • big data
  • genome wide
  • density functional theory
  • candida albicans
  • water quality