Transfer Learning Approach for Classification of Histopathology Whole Slide Images.
Shakil AhmedAsadullah ShaikhHani AlshahraniAbdullah AlghamdiMesfer AlrizqJunaid BaberMaheen BakhtyarPublished in: Sensors (Basel, Switzerland) (2021)
The classification of whole slide images (WSIs) provides physicians with an accurate analysis of diseases and also helps them to treat patients effectively. The classification can be linked to further detailed analysis and diagnosis. Deep learning (DL) has made significant advances in the medical industry, including the use of magnetic resonance imaging (MRI) scans, computerized tomography (CT) scans, and electrocardiograms (ECGs) to detect life-threatening diseases, including heart disease, cancer, and brain tumors. However, more advancement in the field of pathology is needed, but the main hurdle causing the slow progress is the shortage of large-labeled datasets of histopathology images to train the models. The Kimia Path24 dataset was particularly created for the classification and retrieval of histopathology images. It contains 23,916 histopathology patches with 24 tissue texture classes. A transfer learning-based framework is proposed and evaluated on two famous DL models, Inception-V3 and VGG-16. To improve the productivity of Inception-V3 and VGG-16, we used their pre-trained weights and concatenated these with an image vector, which is used as input for the training of the same architecture. Experiments show that the proposed innovation improves the accuracy of both famous models. The patch-to-scan accuracy of VGG-16 is improved from 0.65 to 0.77, and for the Inception-V3, it is improved from 0.74 to 0.79.
Keyphrases
- deep learning
- contrast enhanced
- computed tomography
- magnetic resonance imaging
- convolutional neural network
- artificial intelligence
- machine learning
- end stage renal disease
- dual energy
- chronic kidney disease
- primary care
- ejection fraction
- positron emission tomography
- healthcare
- newly diagnosed
- magnetic resonance
- peritoneal dialysis
- climate change
- prognostic factors
- papillary thyroid
- squamous cell carcinoma
- high resolution
- diffusion weighted imaging
- pulmonary hypertension
- optical coherence tomography
- image quality
- pet imaging
- rna seq
- clinical decision support