Comparison between single and serial computed tomography images in classification of acute appendicitis, acute right-sided diverticulitis, and normal appendix using EfficientNet.
So Hyun ParkYoung Jae KimYeoun Jae KimJun-Won ChungHyun Cheol KimIn Young ChoiMyung-Won YouGi Pyo LeeJung Han HwangPublished in: PloS one (2023)
This study aimed to develop a convolutional neural network (CNN) using the EfficientNet algorithm for the automated classification of acute appendicitis, acute diverticulitis, and normal appendix and to evaluate its diagnostic performance. We retrospectively enrolled 715 patients who underwent contrast-enhanced abdominopelvic computed tomography (CT). Of these, 246 patients had acute appendicitis, 254 had acute diverticulitis, and 215 had normal appendix. Training, validation, and test data were obtained from 4,078 CT images (1,959 acute appendicitis, 823 acute diverticulitis, and 1,296 normal appendix cases) using both single and serial (RGB [red, green, blue]) image methods. We augmented the training dataset to avoid training disturbances caused by unbalanced CT datasets. For classification of the normal appendix, the RGB serial image method showed a slightly higher sensitivity (89.66 vs. 87.89%; p = 0.244), accuracy (93.62% vs. 92.35%), and specificity (95.47% vs. 94.43%) than did the single image method. For the classification of acute diverticulitis, the RGB serial image method also yielded a slightly higher sensitivity (83.35 vs. 80.44%; p = 0.019), accuracy (93.48% vs. 92.15%), and specificity (96.04% vs. 95.12%) than the single image method. Moreover, the mean areas under the receiver operating characteristic curve (AUCs) were significantly higher for acute appendicitis (0.951 vs. 0.937; p < 0.0001), acute diverticulitis (0.972 vs. 0.963; p = 0.0025), and normal appendix (0.979 vs. 0.972; p = 0.0101) with the RGB serial image method than those obtained by the single method for each condition. Thus, acute appendicitis, acute diverticulitis, and normal appendix could be accurately distinguished on CT images by our model, particularly when using the RGB serial image method.
Keyphrases
- deep learning
- convolutional neural network
- computed tomography
- contrast enhanced
- liver failure
- respiratory failure
- artificial intelligence
- magnetic resonance imaging
- dual energy
- machine learning
- drug induced
- aortic dissection
- positron emission tomography
- image quality
- newly diagnosed
- diffusion weighted
- high throughput
- rna seq