Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity.
Saeid GhavamiJon-Jon SantiagoBarbara E NickelGlen Lester SequieraJie WangRobert R FandrichDavinder S JassalSanjiv DhingraLorrie A KirshenbaumPeter A CattiniElissavet KardamiPublished in: American journal of physiology. Heart and circulatory physiology (2018)
Cardiac fibroblast growth factor 2 (FGF2) exerts multiple paracrine activities related to cardiac response to injury. Endogenous FGF2 is composed of a mixture of 70% high- and 30% low-molecular-weight isoforms (Hi-FGF2 and Lo-FGF2, respectivley); although exogenously added Lo-FGF2 is cardioprotective, the roles of endogenous Hi-FGF2 or Lo-FGF2 have not been well defined. Therefore, we investigated the effect of elimination of Hi-FGF2 expression on susceptibility to acute cardiac damage in vivo caused by an injection of the genotoxic drug doxorubicin (Dox). Mice genetically depleted of endogenous Hi-FGF2 and expressing only Lo-FGF2 [FGF2(Lo) mice] were protected from the Dox-induced decline in ejection fraction displayed by their wild-type FGF2 [FGF2(WT)] mouse counterparts, regardless of sex, as assessed by echocardiography for up to 10 days post-Dox treatment. Because cardiac FGF2 is produced mainly by nonmyocytes, we next addressed potential contribution of fibroblast-produced FGF2 on myocyte vulnerability to Dox. In cocultures of neonatal rat cardiomyocytes (r-cardiomyocytes) with mouse fibroblasts from FGF2(WT) or FGF2(Lo) mice, only the FGF2(Lo)-fibroblast cocultures protected r-cardiomyocytes from Dox-induced mitochondrial and cellular damage. When r-cardiomyocytes were cocultured with or exposed to conditioned medium from human fibroblasts, neutralizing antibodies for human Hi-FGF-2, but not total FGF2, mitigated Dox-induced injury of cardiomyocytes. We conclude that endogenous Hi-FGF2 reduces cardioprotection by endogenous Lo-FGF2. Antibody-based neutralization of endogenous Hi-FGF2 may offer a prophylactic treatment against agents causing acute cardiac damage. NEW & NOTEWORTHY Cardiomyocytes, in vivo and in vitro, were protected from the deleterious effects of the anticancer drug doxorubicin by the genetic elimination or antibody-based neutralization of endogenous paracrine high-molecular-weight fibroblast growth factor 2 isoforms. These findings have a translational potential for mitigating doxorubicin-induced cardiac damage in patients with cancer by an antibody-based treatment.
Keyphrases
- high glucose
- ejection fraction
- endothelial cells
- drug induced
- left ventricular
- oxidative stress
- drug delivery
- computed tomography
- emergency department
- dna methylation
- coronary artery disease
- heart failure
- climate change
- metabolic syndrome
- high resolution
- insulin resistance
- wild type
- combination therapy
- long non coding rna
- electronic health record
- genome wide
- adverse drug